Cross validation in sparse linear regression with piecewise continuous nonconvex penalties and its acceleration
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملCross validation in LASSO and its acceleration
We investigate leave-one-out cross validation (CV) as a determinator of the weight of the penalty term in the least absolute shrinkage and selection operator (LASSO). First, on the basis of the message passing algorithm and a perturbative discussion assuming that the number of observations is sufficiently large, we provide simple formulas for approximately assessing two types of CV errors, whic...
متن کاملNonconvex piecewise linear knapsack problems
This paper considers the minimization version of a class of nonconvex knapsack problems with piecewise linear cost structure. The items to be included in the knapsack have a divisible quantity and a cost function. An item can be included partially in the given quantity range and the cost is a nonconvex piecewise linear function of quantity. Given a demand, the optimization problem is to choose ...
متن کاملSparse Reduced Rank Regression With Nonconvex Regularization
In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing ...
متن کاملNonconvex, lower semicontinuous piecewise linear optimization
A branch-and-cut algorithm for solving linear problems with continuous separable piecewise linear cost functions was developed in 2005 by Keha et. al. This algorithm is based on valid inequalities for an SOS2 based formulation of the problem. In this paper we study the extension of the algorithm to the case where the cost function is only lower semicontinuous. We extend the SOS2 based formulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2019
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/ab3e89